过渡元素XPS分析 吴正龙 北京师范大学分析测试中心

廣族期	IA					非金	属	金属	1									0
1	王氮	II A											ША	IVA	VA	VIA	VIIA	gHe 氦
2	3Li 锂	4Be 铍	8										s B 硼	。C 碳	7N 氨	9 0 氧	∎F 氟	teNe 氖
3	^{11Na} 钠	12Mg 镁	ШB	IVB	VB	VIB	VIIB		VIII		I B	ПВ	13AI 铝	usi 硅	us ^P 磷	。 。 硫	₩ ^{C1} 氣	se ^{Ar} 氯
4	19K 钾	₂₀ Ca 钙	21Sc 钪	22Ti 钛	23 V 钒	24Cr 铬	₂₅ Mn 锰	26Fe 铁	₂₇ Co 钴	28 ^{N i} 镍	<mark>29</mark> Cu 铜	₃₀ Zn 锌	31Ga 镓	32Ge 锗	aaAs 砷	₩Se 硒	^{請Br} 溴	∎∎Kr 氪
5	37 ^{Rb} 铷	₃₈ Sr 锶	₃₉ Y 钇	40 Zr 错	41 ^{Nb} 铌	₄₂ Mo 钼	₄₃ Tc 锝	<mark>₄₄</mark> Ru 钉	₄₅ Rh 铑	<mark>46</mark> Pd 钯	47Ag 银	Cd 编	₄₉ In 铟	<mark>50</mark> Sn 锡	₅ıSb 锑	≇Te 碲	au 碘	₽∎Xe 氙
6	55 ^{Cs} 铯	56 ^{Ba} 钡	La~Lu 57~71 镧系	72 ^{Hf} 铪	73 ^{Ta} 钽	74 [₩] 钨	75 ^{Re} 狭	76 ^{0s} 锇	<mark>フフ</mark> lr 铱	78 ^{Pt} 铂	7gAu 金	₈₀ Hg 汞	81TI 铊	<mark>82</mark> Pb 铅	₈₃ Bi 铋	₈₄ Po 钋	邮At 砹	aoffn 家
7	87 ^{Fr} 钫	88 ^{Ra} 镭	Ac~Lr 89~103 锕系	104 ^{Rf}	105 ⁰⁶	106 ^{Sg}	107 ^{Bh}	10548	109 ^{Mt}	110	111	112						

镧系	57 La	₅sce	₅9Pr	€0Nd	₆₁ Pm	₆₂ Sm	₆₃ Eu	₅₄Gd	₅₅Tb	66Dy	₆₇ Ho	68Er	₅₀Tm	₇₀ Yb	71Lu
	镧	铈	镨	钕	钷	钐	铕	钆	铽	镝	钬	铒	铥	镱	镥
锕系	89Ac	90Th	₉₁ Pa	92 <mark>U</mark>	₉₃ Np	₉₄ Pu	₉₅ Am	₉₆ Cm	₉₇ Bk	₉₈ Cf	₉₉ Es	_{ioo} Fm	10 <mark>Md</mark>	tozNo	io <mark>↓</mark> r
	锕	钍	镤	铀	镎	钚	镅	锔	锫	锎	锿	镄	钔	锘	铹

北京师范大学分析测试中心 wuzl@bnu.edu.cn

过渡元素?

× 3 (3)

- ◆ 未成对d电子(外过渡元素)[过渡元素],或者未成对f 电子(内过渡元素,镧系和锕系)[稀土元素]
- ◆ 出现XPS谱峰多结构复杂化(如V,Mn,Cu,Ta,W):
 ◆ 顺磁抗磁铁磁材料
 - ◎ 多价态化合物:例如氧化物,价态+2/+3价(Sc,Y,La)~ +8价(Ru,Os),即使在XPS/AES分析时也易变价.
 - ◎ 同一元素多个化学键型:离子键(多为低价化合物)、 共价键(多为高价化合物)

过渡元素原	原子的价电·	子层结构和	氧化态					
元 素	Sc	Ti	V	Cr	Mn	Fe	Со	Ni
价电子层约	3d4s	3d4s	3d4s	3d4s	3d4s	3d4s	3d4s	3d4s
氧化态	(+ II)	+ II	+ II	+ II	+ II	+ II	+ II	+ II
	+III	+III	+III	+III	+III	+III	+III	(+III)
		+IV	+IV	+VI	+IV	(+VI)		
			+V		+VI			
					+VII			
元 素	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd
价电子层约	4d5s	4d5s	4d5s	4d5s	4d5s	4d5s	4d5s	4d5s
氧化态	+III	+ II	+ II	+ II	+ II	+ II	+ II	+ II
		+III	+III	+III	+III	+III	+III	+III
		+IV	+IV	+IV	+IV	+IV	+IV	+IV
			+V	+V	+ V	+V	+V	
				+VI	+VI	+VI	+VI	
					+VII	+VII		
						+VIII		
元 素	La	Hf	Та	W	Re	0s	Ir	Pt
价电子层约	5d6s	5d6s	5d6s	5d6s	5d6s	5d6s	5d6s	5d6s
氧化态	+III	+III	+ II	+ II	+III	+ II	+ II	+ II
		+IV	+III	+III	+IV	+III	+III	+III
			+IV	+IV	+ V	+IV	+IV	+IV
			+V	+ V	+VI	+ V	+ V	+V
				+VI	+VII	+VI	+VI	+VI
						+VIII		2 July

- ◈ 主峰结构与解释
- ◇ 伴峰(难)
- ♦ 价带谱
- ◈ 背景
- ◆ 俄歇峰
- ◆ 化学位移与价态分析(常规)
 ◆ 定量分析(常规)

....

◊ 过渡元素的特性和性质使XPS谱结构较复杂, 谱图信息增多,解释较困难

- ◊ 过渡元素的XPS谱峰结构

 - ◊ 终态多重分裂
 - 多价态及谱峰叠加
 金
 - ◊ 携振(震激震离)和能量损失

Coster Kronig(CK)和超CK跃迁

 ◇ XPS谱中内壳层pdf发射光电子产生自旋轨道分裂 (SOS),如图 Ge2p分裂2p_{3/2}, 2p_{1/2},理论上峰强 2J+1(J为总角动量),两峰强比为2:1,峰宽FWHM相 等.但并非所有2p都符合此规律,何故?

CK和超CK:Ti(过渡元素)

1) 双峰高度偏离2:1, FWHM不同, 难以对双峰进行拟合! 2) 2p1展宽,存在另外的价态信息峰?

TiO2

Name	Start	Peak	End	Height	FWHM	Area (P)		Area (N)	Atomic	Peak
	BE	BE	BE	CPS	eV	CPS.eV		TPP-2M	%	Туре
Ti2p3	461.130	458.373	454.830	120054.447	1.115	154721.587)	0.4681	50.616	Standard
Ti2p1	467.180	464.129	460.880	32212.146	2.002	70127.429	ł	0.4568	49.384	Standard

强度(高度)变化Ti2p_{3/2}:Ti2p_{1/2}约4:1

SrTiO3

Ref.	Name	Peak BE	Height CPS	Height Ratio	Area CPS.eV	Area Ratio	FWHM fit param (eV)
A	Ti2p3 A	458.00	82198.40	1.00	101830.74	1.00	1.06
В	Ti2p1 A	463.79	23015.55	0.28	47640.23	0.47	1.76
			3.6:1		~2:1		1:1.8

结论:Ti2p的SOS中,相对于Ti2p3,Ti2p1展宽且峰高比下降,偏离1:2; 不同Ti化合物中Ti2p1、Ti2p3的峰宽与峰强(峰高)变化不同,但峰面积比恒为1:2。 TiC/Si 薄膜

结论:Ti2p的SOS中,相对于Ti2p3,Ti2p1展宽且峰高比下降,偏离1:2; 不同Ti化合物中Ti2p1、Ti2p3的峰宽与峰强(峰高)变化不同,但峰面积比恒为1:2

CK和超CK跃迁对XPS影响(Ti)

- ♦ Coster-Kronig(CK)和超CK跃迁对XPS谱峰宽 度与强度变化
- ◆ 概括:自旋轨道分裂(SOS)双峰Ti2p_{3/2}与 Ti2p_{1/2}

双峰拟合时需调整高度比

Coster-Kronig跃迁(?)影响XPS谱 (?)

- ◆ 光电子的发射受到下列"<u>*弛豫过程*</u>"影响
 - ◇ 荧光过程
 ◇ 俄歇过程
 ◇ CK和超CK过程
 ◇ 样品中的元激发
 ◇ 能量损失
 ◇ W

- 光电离后的"弛豫过程"使XPS谱表现为
 - ◎ 峰位变化:使得BE减小
 - ◎ 峰强变化:
 - ♦ 峰宽变化: τ ΔE~h
 - ◎ 峰结构:

Coster-Kronig跃迁(?)影响XPS谱(?)

- ◈ 俄歇(Auger)跃迁, E_k^{WXY}

Coster-Kronig跃迁()影响XPS谱 (?)

◊ Ti2p发射与CK
◊ Ti3p发射与超CK

- ◇ CK跃迁和超CK跃迁使正常光电子发射和正常俄歇发射弛豫加快,终态效应,从而谱峰加宽,出现伴峰结构等
- ◆ 讨论3d过渡元素CK和超CK导致的光电子峰 展宽

- ♦ XPS中光电子谱峰宽度(常表示为FWHM)

 - ◎ 能级展宽, Lorentz
 - ◎ 其它:弛豫展宽(忽略?),多重分裂,.....
- ◊ 近似表示为

$W=W_x+W_g+W_a+W_b$ 相对于测量值W(表观), Wa通常称为谱峰的绝对宽 度(或寿命展宽 lifetime broadening,自然线宽)

◆ 实验和理论分析研究表明:对于3d过渡元 素,CK(L₂L₃M₄₅过程)对2p谱峰可能影响,超 CK(M₂M₃M₄₅过程)对3p可能影响。CK和超 CK对2p峰宽的贡献?

- ◊ CK对2p谱峰宽影响,总结出经验关系公式
 ₩_{CK}=W_{a3}*(I_a-2)
- 式中W_{CK}为CK过程展宽,W_{a3}为2p_{3/2}展宽, I_a=I_{2p3}/I_{2p1}(高度峰强,L₃M₄₅M₄₅/L₂M₄₅M₄₅?) ◆ 峰宽有下列关系CK对2p

W_{a1}=W_{a3}+W_{CK} 式中W_{a1}为2p_{1/2}展宽。 特别地,当I_a=2时CK对谱峰没有影响

♦ 3d 过渡元素的2p 峰受 L₂ L₃ M₄₅ 影响

	E _{CK} eV *	W _{CK} eV *	Wa(2p _{1/2}) eV	Wa(2p _{3/2}) eV *	测强度	备注
Ti	5	0.4	0.5	0.1~1(0.2)	4	1.1(TiO2 2p3) 4
V	7	0.49	0.67	0.18	4.7	1.4(V205 2p3) 4
Cr	8	0.47	0.65	0.18	4.6	
Mn	10	0.54	0.74	0.20	4.7	
Fe	12	0.64	0.88	0.24	4.7	
Со	14	0.84	1.16	0.32	4.6	
Ni	14	0.83	1.04~1.14	0.21~0.31	5.9~4.7	
Cu	10	0.68	1.09	0.41	3.6	
Zn	5	0.39	0.89	0.50	2.8	

注1: L₂--2p_{1/2}, L₃--2p_{3/2}, M₄₅--3d; 注2¹, **范**応应为资本透入在逻辑(241); Wa(2p_{1/2})=Wa(2p_{3/2})+W_{ck} * J Phys F Metal Phys 11(1981)1727-33

◈ 超CK对3p谱峰影响,

	W _{CK} eV	W _{3p1} eV	W _{3p3} eV	
Fe	0.78	1.22	0.44	
Со	0.55	1.26	0.71	
Ni	0	1.19	1.19	
Cu	0	1.78	1.78	
Zn	0	1.9	1.9	

注1: W_{CK}=W_{a1}-W_{a3} **注2:对于Ni, Cu, Zn的超CK定域化,不对3p峰影响** 注3: Ti~Mn之间的3p峰SOS间距小,出现重叠,难研究

* J Phys F Metal Phys 11(1981)1727-33

- ◇ CK和超CK虽然出峰强度弱,能量低,但是对 正常的XPS和俄歇的峰强、峰宽(峰形)谱峰 结构干扰,甚至有明显干扰,可能会影响正常 的分析。
- 并不是只有过渡元素才有CK和超CK跃迁及影响光电子发射和俄歇发射,主族元素也会出现.
 但过渡元素能级多易出现且谱峰较复杂,较突出.
- 并不是过渡元素所有谱峰都会受影响,也不是某一元素所有价态均会受影响,出现不对称峰;

过渡元素的XPS谱峰结构
Coster Kronig (CK)和超CK过程 **终态弛豫与负化学位移**(如 Ag Ce)
终态多重分裂
多价态及谱峰叠加
携振(震激震离)和能量损失

- ◆ 光电子激发后发生的事件:
- ◊ 终态弛豫
 - ◎ 离子态:突然近似--> 激发态后绝热近似--> (离子)基态
 - ◇ 外层电子作用(屏蔽,相关)
 - ◎ 使得结合能(电离能)降低~eV
- ◆ 多重分裂
 - ◎ 多电子体系间的互作用,即光致电离后的内壳层与其外层轨 道未成对电子的耦合
- ◆ 携振(电子震激与震离)
- ◎ 能量损失(信号电子的弹性散射与非弹性散射)
- ◎ XPS中的俄歇电子峰(XAES)和CK/超CK

Ag Ce Cu Zn化学位移

 ◇ 按一般化学位移理论(如静电模型)解释, 元素被氧化(正化合价)BE正位移,但.....
 ◇ Ag, Ce等负化学位移?

◊ Cu, Zn, Ag等俄歇化学位移大于光电子峰?
终态弛豫对化学位移影响

- ◊ Ce氧化物中Ce3d峰出现负位移
- ♦ Ag氧化物中Ag3d峰出现负位移
- ◊ Cu Zn Ag的氧化物俄歇峰LMM化学位移大于 光电子峰位移

相对于纯Ag, Ag₂O的Ag3d BE降低0.36eV, 样品PTA-Ag中Ag物种介于纯Ag和Ag₂O之间。 Ag MNN佐证了Ag3d结果。

	3d _{5/2} Binding Energ	gy (eV)			
Compound Type	367	368	369	。右岛化学位我中亚	
Ag				8日贝化于但何山北	
Alloys					
Ag ₂ S					
Agi					
AgE					
Oxides		800914			
Ag ₂ CO ₃					
Sulfate		the second second second	÷		
ounde					
AgOOCCF3					
AgOOCCF3 Ag(OAc)				I Phys Chem C 2010, 114-2	1562-21571
AgOOCCF3 Ag(OAc)				J Phys Chem C 2010, 114,2	1562-21571
AgOOCCF3 Ag(OAc)	Ag(pure Ag)	eV	Ag ₂ O eV	J Phys Chem C 2010, 114,2 AgO eV	1562-21571
AgOOCCF3 Ag(OAc) ucture	Ag(pure Ag) fcc	eV	Ag ₂ O eV Cubic cuprite	J Phys Chem C 2010, 114,2 AgO eV 1XAg(I)	1562-21571
AgOOCCF3 Ag(OAc)	Ag(pure Ag) fcc Ag(0)	eV	Ag ₂ O eV Cubic cuprite Ag(I)	J Phys Chem C 2010, 114,2 AgO eV 1XAg(I) 1XAg(III)	1562-21571
AgOOCCF3 Ag(OAc)	Ag(pure Ag) fcc Ag(0) 368.1∓0.1	eV	Ag ₂ O eV Cubic cuprite Ag(I) 367.7 ± 0.1	J Phys Chem C 2010, 114,2 AgO eV 1XAg(I) 1XAg(III) 367.3∓0.1	1562-21571
AgOOCCF3 Ag(OAc)	Ag(pure Ag) fcc Ag(0) 368.1∓0.1 368.26	eV	Ag ₂ O eV Cubic cuprite Ag(I) 367.7∓0.1	J Phys Chem C 2010, 114,2 AgO eV 1XAg(I) 1XAg(III) 367.3∓0.1	1562-21571
AgOOCCF3 Ag(OAc) Loture	Ag(pure Ag) fcc Ag(0) 368.1∓0.1 368.26 368.24[0.63]	eV	Ag₂O eV Cubic cuprite Ag(I) 367.7∓0.1 367.3[1.1]	J Phys Chem C 2010, 114,2 AgO eV 1XAg(I) 1XAg(III) 367.3∓0.1 Ag(III)366.8[0.8]	1562-21571

▲ XPS中元素化学位移来源简单地分为两部分

- ◎ 原子内结合能变化:可按突然近似、电荷势模型处理
- ◇ 外部弛豫(及相关作用,能级结构重构)
- 形式表示为 $\Delta E_{\rm b} = \Delta E(q) + \Delta E(r)$
- ◆ 当某构型的△E(r) (<0,只考虑外部弛豫)较明显时,可能出现△ E_b <=0</p>
- ◆ 俄歇峰化学位移,也有弛豫能变化贡献,且俄歇过程为双重电离,弛豫变化明显,可能导致更大的化学位移,常用俄歇和俄歇参数分析Cu、Zn、Ag等价态。
- 弛豫能R与俄歇参数α'关系: Δα'=2[ΔR(q)+ΔR^{ea}],
 式中(1)价电子转移导致弛豫变化和(2)外部原子弛 豫变化

◊ 过渡元素的XPS谱峰结构 ♦ Coster Kronig (CK)和超CK过程 ◊ 终态多重分裂 ◎ 多价态及谱峰叠加 ◎ 携振(震激 震离)和能量损失

※ 光电发射中pdf壳层(轨道l<>0)终态分裂成 双峰(SOS),s壳层(轨道l=0)终态不分裂。 但是在**顺磁态**多重分裂中s也会出现劈裂峰 结构。常见到有些Mn3s、Cr3s、Fe3s等明 显地劈裂为双峰。

多重分裂: Mn Cr Fe.....

- Mn2p与Mn3s
- ◆利用Mn3s之间的终态分裂分析价态 ◆比Mn2p峰化学位移明显
- ◆ 其它顺磁态(过渡)Cr、Fe、Ni、(稀土)Sm、 Eu、Gd、Tb、Dy等均会出现不同程度的分 裂
- ◇ 分析分裂程度直接探讨价自旋态(未成对 电子数)

- ◊ 例子:测量Mn价态中Mn3s更具有明确的价态信息;
- Mn3s终态为单峰3s_{1/2},但如果元素Mn的价 电子层3d有未成对电子时,XPS中发生3s与 3d耦合形成多个终态,于是Mn3s不再是对 称单峰3s_{1/2},.....

Mn外层电子结构 $3d^54s^2$

Mn²⁺**外层电子结构** 3d⁵4s⁰

Mn外层电子结构 $3d^54s^2$

Mn4+**外层电子结构** 3d³4s⁰

Mn2p和Mn3s的多重分裂

Ref	初自旋S	ΔΕ eV	强度比	
$\rm MnO_2$ ($\rm IV$)	3/2	4.8		
Mn_2O_3 (III)	4/2	5.5		
MnO (II)	5/2	5.9		

多采用能量间距 Δ Eb(3s)分析价态和自旋态 例: Avantage中Mn3s电子多重分裂能量间隔 Δ Eb(3s).

实验XPS测量MnO2,	Mn304和
含Mn未知样品samp]	le结果

Ref	初自旋S	ΔE _{3s} (理论) eV
$\rm MnO_2$ ($\rm IV$)	3/2	4.8 (4.2)
Mn_2O_3 (III)	4/2	5.5 (5.5)
MnO (II)	5/2	5.9 (6.7)

对于初态外层dⁿ组态自旋态*S*=Σ*s*,组合 态s¹dⁿ,理论上多重分裂峰的强度比为 (S+1)/S,于是有 Mn(II) I₊/I=7/5; Mn(III) I₊/I=6/4; Mn(IV) I₊/I=5/3; 实际强度会受到弛豫、结构等影响而偏离理论比值,一般实测强度比高于理论值. 强度比的应用仍处研究中。 本实验强度测量结果见列表.

	ΔE eV	I+/I	S(理论)
MnO2	4.58	2	1
Mn304 (Mn203)	5.60	1.8	1.25 (3/2)
Sample	4.7	1.7	1.4(3/2)

北京师范大学分析测试中心 wuzl@bnu.edu.cn ATC, Beijing Normal University

在顺磁态中出现多重分裂

◇ 外层有未成对电子: Mn (II, VI): Mn3s/Fe(III):Fe3s/Cr(III, IV):Cr3s 产生两 个终态(对于s电子激发),

XPS中激发过渡金属3s光电子谱的多重分裂能量差					
		配体电负性	分裂能量差 ΔEb(3s) eV	强度比(S+1)/S	
	CrF3	3.9	4.2		
	CrCl3	3.1	3.8		
	CrBr3	2.9	3.1		
	Cr203	3.5	4.1(3.3)		
	Cr2S3	2.6	3.2		
	MnF2	3.9	6.3(6.5)		
	MnCl2	3.1	6.0		
	MnBr2	2.9	4.8		
	Mn0	3.5	5.5(5.7)		Knowl
	MnS	2.6	5.3		
	MnN	3.0	5.5		
	MnF3	3.9	5.6		
	FeF2	3.9	6.0		
	FeCl2	3.1	5.6		
	FeBr2	2.9	4.2		
	FeS	2.6	6.5		
	FeF3	3.9	6.0(7.0)		
	FeCl3	3.1	6.2		
	FeBr3	2.9	4.9		

ΔEb(3s) 分裂间距与:

— 3d上未成对电子数有关; — 3d电子非定域化程度有关 (决定交换积分值); — 内层电子间的相关性有关;

Knowledge Base Mn2O3 5.6 eV

其它具有顺磁特性的离子也可以用多重分裂 特性判断价自旋态,例如过渡元素Cr、Fe, 稀土元素、甚至0、N等。

Table 3 — General guide to paramagnetic species

Multiple	t splitting	and shake-	up lines ai	re generally	rexpected in	the par	amagnetic	states b	elow.

Atomic N	No. Paramagnetic States	Diamagnetic States
22	Ti ⁺² , Ti ⁺³	Ti ^{+ 4}
23	V ⁺² , V ⁺³ , V ⁺⁴	V ⁺⁵
24	Cr ⁺² , Cr ⁺³ , Cr ⁺⁴ , Cr ⁺⁵	Cr ⁺⁶
25	Mn ⁺² , Mn ⁺³ , Mn ⁺⁴ , Mn ⁺⁵	Mn ^{+ 7}
26	Fe ⁺² , Fe ⁺³	K ₄ Fe (CN) ₆ , Fe (CO) ₄ Br ₂
27	Co ⁺² , Co ⁺³	CoB, Co(NO ₂) ₃ (NH ₃) ₃ , K ₃ Co(CN) ₆ , Co(NH ₃) ₆ Cl ₃
28	Ni ⁺²	K ₂ Ni(CN) ₄ , square planar complexes
29	Cu ⁺²	Cu ⁺¹
42	Mo ⁺⁴ , Mo ⁺⁵	Mo^{+6} , MoS_2 , $K_4Mo(CN)_8$
44	Ru ^{+ 3} , Ru ^{+ 4} , Ru ^{+ 5}	Ru ⁺²
47	Ag ^{+ 2}	Ag ^{+ 1}
58	Ce ⁺³	Ce ⁺⁴
59-70	Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,	
	Er, Tm, Yb compounds	
74	W ⁺⁴ ,W ⁺⁵	W ⁺⁶ , WO ₂ , WCI ₄ , WC, K ₄ W(CN) ₈
75	Re ⁺² ,Re ⁺³ ,Re ⁺⁴ ,Re ⁺⁵ ,Re ⁺⁶	Re ⁺⁷ , ReO ₃
76	Os ^{+ 3} ,Os ^{+ 4} ,Os ^{+ 5}	Os ⁺² ,Os ⁺⁶ ,Os ⁺⁸
77	lr ⁺⁴	r ⁺³
92	U ⁺³ ,U ⁺⁴	U ⁺⁶

Handbook of XPS by C D Wagner, P20

使用Cr3s, Fe3s可分析价自旋和价态

ZnO: Cr

原始Fe2O3

光电激发2p轨道(1>=1)等,将出现更复杂的终态分裂。值 得注意是,3d过渡元素有时用3s强度太弱,也可以考虑使用 足够强的2p多重态分裂,如Fe2p,Co2p,Ni2p等有些物种 可能出现明显的多重分裂间距~1eV,有助于价自旋态和价态 分析。

过渡金属光电离时,多重分裂产生的可能终态数

终态	无组态相互 作用	有组态相互 作用(d壳层)	终态	无组态相互 作用	有组态相互 作用(d壳层)
$s^1 d^n$	2	2	p^5d^5	2	4
p^5d^1	6	6	p ⁵ d ⁶	6	18
p^5d^2	6	12	$p^5 d^7$	6	19
p^5d^3	6	19	$p^5 d^8$	6	12
p ⁵ d ⁴	6	18	p ⁵ d ⁹	6	6

Ni

- ◆ 过渡元素和稀土元素在主峰高BE端的伴峰 复杂,多重劈裂峰和携振峰叠加在一起, 其强度甚至与主峰相当
- ◊ 可以帮助XPS分析,但同时增加谱峰复杂性, 尤其多个化学成分重叠时

· 过渡元素的XPS谱峰结构
 · Coster Kronig (CK)和超CK过程
 · 终态弛豫与负化学位移(如 Ag Ce)
 · 终态多重分裂
 · 多价态及谱峰叠加
 · 携振(震激 震离)和能量损失
 · ……

由于过渡元素能级多、价态多变,且伴峰多,因此易出现谱峰重叠问题 光电子谱峰重叠(包括不同价态间) 光电子与俄歇峰 光电子与伴峰(携振、终态分裂、能量损失) 背景 处理的难度加大

多价态重叠:W Ta Mo

♦ W4f 多价态重叠

 $\widehat{\nabla}$

(Residuals ×

Counts / s

45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

Binding Energy (eV)

北京师范大学分析测试中心 wuzl@bnu.edu.cn

光电子峰重叠:W4f 与 W5p3/2

其它光电子峰互干扰

- MoS₂, Ru-C, Pt-Al, Pr-Cu, La-Ni, Ce-Ni, Hg-Si,
- ♦ 解决方法

- ◊ XPS(AlKa激发)中,弱CoL₃M₂₃M₄₅对 Co2p影响小,这些不明显的干扰峰在定量 分析和精细分析时应该注意。

俄歇峰干扰

◆ 实际分析中俄歇干扰较常见

- ◈ 解决方法(略)
- ◆ 有关光电子 俄歇峰等重叠,在Knowledge base中有一些注释和提醒。

稀土 La Ce Eu Tb Er.....

 过渡元素的XPS谱峰结构
 Coster Kronig (CK)和超CK过程
 终态弛豫与负化学位移(如 Ag Ce)
 终态多重分裂
 多价态及谱峰叠加
 携振(震激 震离)和能量损失

过渡元素的携振峰

- ◊ 分析携振来源
- ◊ 过渡元素
 - ◊ 存在多能级
 - ◎ 过渡氧化物中过渡元素与02p之间的 耦合
 - <u>ه</u>
- ♦ 稀土元素
 - ◎稀土化合物出现更加复杂的携振峰

◆ 携振峰与化学态位移峰、终态效应峰叠加,在 主峰的高BE(低KE)形成复杂的多峰谱带

携振: Cu2p Ni2p La3d Ce3d

- ◆ 氧化物的终态弛豫3d电子与02p交叠耦合, 出现不同的终态产生携振伴峰
- ◆ 多种机制产生携振:原子能级,分子能级, 价带,激发态激元,配体能级耦合,.....

XPS分析Cu: 光电子峰/峰宽特征 俄歇峰(俄歇参数)特征 携振峰特征

电子组态

Cu(0): 3d¹⁰ 4s¹ Cu(i): 3d¹⁰4s⁰ Cu(ii): 3d⁹4s⁰

Cu(0), Cu(i)的3d均为闭壳层,只出现一个终态 Cu(ii)的3d为开壳层,出现了2个终态 这些携振峰(终态分裂)与物质构型有关

CASE : Cu

注意: 非单色化X-ray激发XPS中卫星峰的干扰, 如双阳极激发Zn2p (ZnO)

XAES : Ag

Case: TiO2:Ag 中 Ag的XPS分析. 结论为Ag₂O

◊ 4f空轨道或存在未成对电子,易出现携振峰 ◊ 认识谱峰结构,指认元素和价态

XPS: La 3d

多重态分裂、携振峰?

电子组态 $La 原子: La(0) 4f^{0}5d^{1}6s^{2}$ $La(iii) 离子: 4f^{0}5d^{0}6s^{0}$ 外层空轨道,不出现未成对电子,不属于顺磁态 La(iii) 出现的伴峰不归属于多重态分裂,可能与Ce类似来源于携振

XPS:Eu3d

◎ 应用携振峰可以帮助XPS指认化学态,同时 也可能出现谱峰干扰,增加XPS谱峰分析的 困难

- ◆ 单色AlKa X射线激发下出现损失峰,当背景低时才能观察到
- ◎ 原理与应用(略)
- ◇ 分析上应结合理论分析采用多技术相互印
 证
 - ◇ 在AES谱中也会观察到损失峰
 ◇ 可采用REELS与XPS、AES协同研究单电子和多电子能量损失

XPS不对称性:Fe2p Cr2p Ni2p

- ◈ 谱峰不对称性拖尾
 - ◎ 费米能级附近电子激发

过渡元素XPS分析问题

- ◊ 总结这些现象有助于过渡元素定量、定性 和价态分析:峰形不对称性,不确定,多 种因素相互关联使得谱峰复杂化;
- ◆希望同行都来关心这些问题,共同探讨解 决问题的途径,.....

化学位移变化规律与弛豫效应(Relaxation Effect)

弛豫能δE~ 10⁻¹eV, 10⁰eV, 10¹eV, 10²eV

原子团族心能级位移((

表面化学位移 (SCS)

